F1: A FAST AND

ACCELERATOR FO

HOMOMORPRHIC ENCRYPT

R F

_/

PROGRAMMABLE

LLY
ON

1/12/2022
NICK GENISE
WORK DONE AT SRI INTERNATIONAL

JOINT WITH AXEL FELDMANN, NIKOLA SAMARDZIC, ALEKSANDARKRAEMANAS, RORESLINSKI
KARIMELDEFRAWRHRISTOPHERIKERDANIEL SANCHEZ

FUNDED BYARPAPRIVE

FULLY HOMOMORPHIC ENCRYPTION (FHE)

Example, a patient encrypts their symptoms, and the

function i1s a medical diagnosis. encrypted

Computer
w/out key!

x) Encrypt o

S

§ Encrypted(x

f(x)¢mm——Decrypt by
Encrypted(f(x))

A SHORT HISTORY-EGE

1978(@R|\3est Adleman, afertouzop r opose “pri vacOoi@)o® momo
O¢ ia

2009: Gentry finds the firgully homomorphic encryptioscheme. Bases it on a
lattice-based hardness assumption.

2011:Brakerski Gentry, and/aikuntanatharpropose an FHE scheme based on the
popular (Ring) Learning with Errors problem.

Today: FHE was 100,000x slower than unencrypted computation, but recent efforts
are speeding this up using application specific integrated circuit (ASICS).

(R)LWE

LEARNING WITH ERRORS (LWE)

Lete N = be in the hundreds) a functionofe,and..be a “smal |l ” di s
H--.

In 2005, Regev showed the following distribution is pseudorandom assuming worst
case lattice problems are hard for quantum computers:

+h+hy Q.

where= N 5 ¥ are uniformly random vectorQN .., W .

Search version: can you recovegiven noisy inneproducts?

LEARNING WITH ERRORS (LWE), ENCRYPTION SCHEME

Key Gen.=N forax € a £ i, vas before anggN ...

pk=(=h=v g =hft ,sk=v
Enc(m): Sample a random binary vectaand return

ct:= 0L 1 @ =
wherel Is a scaling, decoding factor.

Dectt, sk: @ v4E 1 & Can recover message if noise.
Note, linearlynomomorphic! (with growing noise)

RING LEARNING WITH ERRORS (RLWE)

Problem with LWE: The public keys are huge! Roughlya € "Q bits.

Il n 2009, partially mot i v yubashevikPelk&teamnd r y
Regev proved a more compact version of LWE Is secure assuming the hardness of
worst-case problems on ideal lattices.

Eventual result: efficient latticbased encryption and a base scheme for FHE!

RING LEARNING WITH ERRORS (RLWE), ENCRYPTION
SCHEME

Polynomials’Y h 4 ®wX® p whered ¢ PTG T

..Is a distribution ovetY by the sampling the same distribution over polynomial
coefficients.

Key Gen®N 'Y andi hON ...
ok =(CFtd i Q) P, sk=i .

Enc(m): Sample a random binary polynomiaind return
ct=o0d® I a=(wm)NY Y
wherel is a scaling, decoding factor.
Note, linearlynomomorphic! (with growing noise) :

BGV

ENCRYPTION AND DECRYPTION

A BGV encryption I s an RLWE encryption
PlaintextspaceyY 4 wfw P

0@(@) Ot @ :AO (W) (@i N Qah ONY Y

n L 1 with the former prime i

Note:w WidéqN n[Qa

10

HOMOMORPHIC ADDITION

O(@) O(azxx O@ ok

(o) (wdwe (O ®i NQ Q dh o ©)

Noise magnitude grows byp bit.

HOMOMORPHIC MULTIPLICATION

ldea: view through the decryption equatioip,Q & ®© i & € @. Then,
ad n[OoOi Al bo i[low ow] | oodé 9.

Or, ®W,NW Ww,w)encryptsd & ander(phi i)8

We use an encryption of t oRelineasize¢ back to anilencrypt|
Noise size squares (new noiseQ) (aga double the noise bits)!

12

POLYNOMIALS/DATA TYPES: CRT ON COEFFICIENTS

So far, we’ve ignorednthe structure of

In practice, we tak@y 1 1 E 3 where eachj is a distinct prime of machingize
(32 or 64 hits).

Then, we can represent a coefficient of a polynomia¥irvia the Chinese remainder

=

theorem:y e o d E ¥ via
Ny h O6Y® waéQhodeéDBhoaé

Addition and multiplication iparallel!

13

POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIA

Using the CRT on coefficients allows us to repre¥eras

~

Yo 16 YA R

What abouteachlY 94 wfw p?
Do the FFT!

The FFT modulo a prime number is called the NTT (nutheeretic
transform).

14

POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIA
CONT.

If eachri kK p& € Q (thend contains a multiplicative subgroup of sizedwhich
IS the roots ok p (¢ Gth roots of unity).

The NTT is the evaluation at allof these points:

Y L0 W ORE B R) .

Addition and multiplication ovelf in in-parallel!

Just like the FFT, the roots of unity allow us to compute this indinget| T (C .

15

CRT AND NTT: MAIN POINTS

CRT allows us to represéf Y as0 polynomials in

Y R S B S
NTT allows to represeniy{ asyd

This 1 s -€CRE” “domuml el t all ows pol ynomi al
done Iin parallel over finite fields.

adzOK 2F (0KS 20SNKSIR Ay 6az2Fugol NSO CI 9
This Is because most operations require us to switch between NTT form and
coefficient form.

16

PLAINTEXT SLOTS

The same idea appliesip Thatis, iffk pd € '@ 4 then the NTT can be applied to
the plaintext spacéy e u .

We call this a “pacacicancdricrymielerheatsimie kEach s i n
pl aintext element I s I n a plaintext “sl

For large computations, we need cressk between slots. This is done by signed

permutations (automorphisms) on the polynomials. Note, these automorphisms are
transitive on the slots.

il NnQa) ;(w,d) 0 (N
Encryption under the wrong key! Need to kewitch again :/.

17

GENERAL CASE FOR PLAINTEXT SLOTS, POWER OF
TWO DIMENSION

Letr] be a prime not equal tgq. Thenw p factors into irreducible
polynomials of thesame degree, dyver the finite fieldd !

The degre&is the smallest numbes.t.nk pad € @ 8Theng € a Q

18

WHAT ARE THE GENERAL SLOTS?

Our old friend, the Chinese Remainder Theorem, gives us the answer:

4 [H[ija[c‘déééa[c‘d

& p 2 0@ O 000

e 0Q

This map is given by evaluating a polynomiaY irby a root of each polynomial. Let
— be arootto™O @ andll be distinct coset representatives af 7(n).

aoym (G-)Ra- B fid-))
This can be done with a DFT over a finite field!

19

COMPARISON: NTT V.S. GENERAL

NTTWhennk pa € Qsw p b fir w 1 splits completely into
degreel factors. Then,

General:Whennis aprime notequalto2y p b . g 'Ow factors into
samedegreeirr. polynomials and

o 20w oS B o ¢]

PLAINTEXT SLOTS: MAIN POINTS

We apply signed per mut atiadusslliiweo e
pickll so these are&otations on the slots

After each permutation, we need to do a kswitching operation (usually
represented as a matrxector multiply).

Keyswitching cannot by done in NTT form (evaluation rep.).

21

[HEFHENTERFACE (SERVER SIDE)

CiphertextAdd: Add the polynomialé ¢ 9, (ohw) (wdeoP
CiphertextMultiply: Compute @@, ®®0 ®®, ww) thenrelinearizeto (o a0 &

CiphertextRotate: Compute(, @ h, @) then keyswitch.

x) Encrypt o

g& =

server

f(x) ¢u— D t &
(x) SR G I Encrypted(f(x))

ACCELERATING FHE WITH ASICS (F1)

You want a chip that:
1. stores multiple ciphertexts and hints,

2. accelerates FHE operations like ADD, MULT, and
ROTATE,

3. reduces bottlenecks to datanovement or high raise,
4. with few functional units with high throughput.

CHALLENGES TO
ACCELERATING x) Encrypt i

g& R &

aoeueg

server F1

f(x)¢ Decryptfy

OVE RVIEW O FF1 Memory hierarchy Computicluster

S
il
==

Small Design: 154 &

Large scratch pad 0 0

Mod mult
Mod mult
Mod add

Compute clusters with FUs for NTT,
mod mult, mod add, and
automorphism.

Scratchpad
banks (x16)
(26x26 Clos)
Vector Register _ | |
File (banked)
Automorphism

Compute clusters

>
| -
o
= BE=
JN B s
= E
=1 BP=
O
S
©
c
(gv)
o0
-
oo
T

Each FU operates on an RNS
polynomial, or a (1K 6K) vector of 24
bit values.

=

il
]|

‘ Mem ctrl

. Vector functional units
Note, fort p @ W p @then act [— —
IS U O(AKSHIs © 0.) Distributed control

25

NTT-FRIENDLY MONTGOMERY MULTIPLIERS

Recall that the RNS moduli, are of the forrmy k p& € Q G
We use a Word.evel Montgomery multiplier, word size ~11 bits, for our modular multipliers.

This algorithm was initially used by Qdart, Ozturk, andsavasn accelerating NTTs using

FPGAS gfprint)

We modify ittor] s.t.) kK pa € 'Q . This allows us to remove one multiplier and save area
and power.

26

https://eprint.iacr.org/2019/109.pdf

4 STEP NTT

Recall, the NTT is an FFT for modular arithmetic. Gi¥ei¥1n 'Y, compute
6 'Y(Q ('@)h@)8 @)

where] is a primitiveg th root of unity modn .

We do both the forward and inverse NTT with $@me hardwareThis is by using a 4 Step NTT and mixing DIT and I
butterflies. Our NTT is only f@ p ¢ glements. So, we reduce all NTT to 4&28nt NTTs.

Twiddle
SRAM

Transpose

27

AUTOMORPHISM FUNCTIONAL UNITS

Each automorphism is("®@)) ™ "Qcw for some’@ ¥* (odd).

The automorphisms form a group and are generated®y pandQ o.

Standard hardware approaches fail! A generap permutation is too complex.

Our functional unit reduces to how an automorphism acts on a de@reep ¢ qubfield and the basis. For
example, ind ¢ v,ve have@w) Aw) A®). (Basis isphw here.)

, () ,(QAw)) . o, (Aw))

28

\ 4

sign flip

\

aut,

AUTOMORPHISM FUNCTIONAL UNIT v }

cyclic shift

v

transpose

\

aut,

v

transpose

SMOJ ajnwliad Suwn|od ajnwliad

Permute row
Permute column Transpose(i.e., transposed column) Transpose

PERFORMANCE AND FUTURE WORK

F1 Accelerates FHE programs by compared to software solutions run on a standard
CPU.

Future work: accelerate more complex FHE operations (e.gswighing), focus on bootstrapping, and
accelerate FHEW/TFHE schemes. (F1 is best used on BGV, BFV, and CKKS.)

30

THANK YOU !

